
TECHNICAL REPORT NO. TR-638
(Revised: 1 June 1999)

ARMY STANDARD UNIT OBJECT

DECEMBER 1998

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.



ii



i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden
to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE

   July 1998
3. REPORT TYPE AND DATES COVERED

Technical Report

4. TITLE AND SUBTITLE

Army Standard Unit Object
5. FUNDING NUMBERS

6. AUTHOR(S)

Don Hodge, Brad Bradley

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Director
U.S. Army Materiel Systems Analysis Activity
392 Hopkins Road
Aberdeen Proving Ground, MD 21005-5071

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR-638

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Director
U.S. Army Materiel Systems Analysis Activity
392 Hopkins Road
Aberdeen Proving Ground, MD 21005-5071

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.
12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 words)

Object-oriented programming offers the potential for increased code reuse, maintainability, and ease of
developing simulations.  Because of these benefits, the use of object-oriented technologies will increase
over time.  In order to prevent duplication of effort and the development of incompatible models, the
Deputy Undersecretary of the Army for Operations Research (DUSA-OR) directed the development of an
Army object management initiative to provide a foundation for Army object development.  This report
documents the standard Unit Object that defines the minimum set of objects and object methods needed for
the development of Unit Objects in models and simulation.

14. SUBJECT TERMS

object oriented programming; modeling and simulation, unit representation
15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAME AS REPORT

 NSN 7540-01-280-5500    Standard Form 298 (Rev. 2-89)
                  Prescribed by ANSI Std. Z39-18

                                                                                                                                                                                                           298-102



ii

This page intentionally left blank.



iii

CONTENTS

Page

LIST OF FIGURES ...................................  iv
     ACKNOWLEDGEMENTS ...................................  v
     ACRONYM LIST ......................................  vi

1. INTRODUCTION .......................................  1

2. BACKGROUND .........................................  2

3. APPROACH ...........................................  3

4. INITIAL DESIGN .....................................  4

5. TEST DESIGN - AWARS UNIT OBJECT .....................  5

6. UNIT OBJECT DESIGN REVIEW ..........................  8
6.1 OMSC Review ...................................  8
6.2 ARES Review .................................... 9
6.3 WARSIM Review ................................  10
6.4 Combat Services Support (CSS) ................  14

7. FINAL UNIT OBJECT DESIGN AND DEFINITIONS ..........  16
7.1 Final Unit Object Design .....................  16
7.2 Unit Object Class and Component Definitions. ..  17

APPENDIXES
A - COMPONENT APPROACH TO OBJECT MODEL STANDARDS FOR
    SIMULATIONS ..................................  A-1
B - WARSIM 2000 CROSSWALK WITH THE OMSC OBJECT MODEL
    STANDARD .....................................  B-1
C - DISTRIBUTION LIST ............................  C-1



iv

LIST OF FIGURES

Figure No. Title   Page

1 Initial Unit Object Design ....................  4
2 AWARS Unit Object Design ......................  6
3 OMSC Interim Unit Object Design ...............  9
4 WARSIM Unit Model ............................. 10
5 WARSIM AUN_C2_Resource Object Design .......... 11
6 WARSIM AUN_Unit Object Design .................. 11
7 OMSC Final Unit Object Design ................. 16

LIST OF TABLES

Table No. Title   Page

1 Comparison of OMSC and WARSIM 2000 Functional
Components ................................ ... 12



v

ACKNOWLEDGEMENTS.

The U.S. Army Materiel Systems Analysis Activity (AMSAA)
wishes to recognize the following individuals for their
contributions to this report:

Authors: Don Hodge
Brad Bradley

Contributions: Major Leroy Jackson

Technical Reviewers: Charles E. Abel
Wilbert J. Brooks



vi

ACRONYM LIST.

AMSAA  Army Materiel Systems Analysis Activity
AMSMPWG  Army Modeling and Simulation Management Program

    Working Group
ARES Advanced Regional Exploratory System
ASTARS  Army Standards Repository System
AWARS  Army Warfare Simulation

CAA  Concepts Analysis Agency
CASTFOREM   Combined Arms Support Task Force Evaluation Model
CSS  Combat Service Support

DNBI  Disease and Non-Battle Injuries
DUSA(OR)  Deputy Undersecretary of the Army for Operations

  Research

ITEM  Integrated Theater Engagement Model
IUD  Initial Unit Design

JWARS  Joint Warfare Simulation

M&S  Models and Simulations
ModSAF  Modular Semi-Automated Forces

NSC  National Simulation Center

OMSC  Object Management Standards Category
OMWG  Object Management Working Group
OOP  Object Oriented Programming

ROM  Refuel On the Move

SAMSO  Standard Army Modeling and Simulation Object
SNAP  Standards Nomination and Approval Process
STRICOM  Simulation, Training, and Instrumentation Command

TRAC-FLVN   TRADOC Analysis Center Ft. Leavenworth
TRAC-MTRY   TRADOC Analysis Center - Monterey
TRAC-WSMR   TRADOC Analysis Center - White Sands Missile Range
TRADOC  Training and Doctrine Command

VIC  Vector-In-Commander

WARSIM  Warfighter Simulation



ARMY STANDARD UNIT OBJECT

1. INTRODUCTION

This report documents the development of the Army standard
Unit Object.  For this effort, the definition of a Unit
encompasses military organizations that represent collections of
entities (e.g., people, vehicles, weapon systems, etc.).
Examples of this definition include organizations (i.e.,
companies, battalions, brigades, divisions, etc.) as well as
functional groups (e.g., Tactical Operations Centers and Fire
Control Centers).  These types of groups are typically used in
simulations where the interest is in representing the sum or
aggregate performance and/or behavior of the group versus
representing the performance, behavior or characteristics of the
individual elements that compose the group.  Simulations that
typically exercise this structure are known as “aggregate-level
simulations.”



2

2. BACKGROUND

Many of the current Army and Joint model development
efforts have embraced the use of Object Oriented Programming
(OOP) for their model development efforts.  As a result, there
has been a proliferation of competing object models.  In 1QFY97,
the Deputy Undersecretary of the Army for Operations Research
(DUSA(OR)) formed an Object Management Working Group (OMWG) to
propose a policy addressing the need for standards associated
with Army M&S objects.  The proposed policy developed by the
OMWG recommended that the Army focus on a high-level object
class structure, independent of any specific simulation
environment.  This would allow M&S developers to tailor the
high-level object standards to their specific applications
through lower-level class/ instantiations that extend the
standards to a specific M&S requirement.  The overall impact in
the development of standard abstract objects will be to organize
future M&S along a common object structure to support
interoperability, object reuse, and community understanding of
the M&S.  The proposed policy was briefed by the OMWG to the
DUSA(OR) and was accepted in principle.  AMSO subsequently
formed the Object Management Standards Category (OMSC) in April
1997 to initiate the proposed policy.  The OMSC mission is to:

• develop abstract objects for Army M&S functions,
• identify the minimum set of object methods/public data

associated with the object function, and
• link the object methods to standard algorithms/data

sources obtained from the other AMSO standard categories.

The OMSC is comprised of M&S practitioners to include those from
the following agencies:

• Army Materiel Systems Analysis Activity (AMSAA) -- serves
as the OMSC Coordinator;

• Concepts Analysis Agency (CAA);
• National Simulation Center (NSC);
• TRADOC Analysis Center - Ft. Leavenworth (TRAC-FLVN);
• TRAC- Monterey (TRAC-MTRY),
• TRAC-White Sands Missile Range (TRAC-WSMR); and
• Simulation, Training, and Instrumentation Command

(STRICOM).



3

3. APPROACH

During the initial stages of developing a policy on objects,
AMSO funded the U.S. Army Training and Doctrine Command (TRADOC)
Analysis Center, Monterey, California (TRAC-MTRY) to perform the
“Standard Army Modeling and Simulation Object (SAMSO) Study”1.
The study proposed an object development approach based on
object composition.  The OMSC reviewed the SAMSO approach and
adopted it for use in developing Army Standard objects.  A paper
describing the component approach to model development is
provided in Appendix A.

 As a part of the SAMSO study, the study team developed
sample Platform and Unit Objects.  The OMSC selected the sample
Unit Object design as the initial prototype for developing a
standard Army Unit Object.  To explore the capability of the
Unit Object to address expected M&S unit implementations, the
OMSC conducted a test application.  The simulation chosen for
the test application was the Army Warfare Simulation (AWARS).
The results of this test application were used to refine the
Unit Object.  Additionally, to gain a broader perspective on the
application of the draft Unit Object to other M&S domains, the
revised draft Unit Object was provided to the Army M&S
Management Program Working Group (AMSMP WG)2 and to the Army M&S
Standard Categories for review.  Comments were collected and
reviewed to determine if any changes to the Unit Object were
needed to address M&S requirements.  Based on these reviews, an
updated version of the draft Unit Object was developed and
submitted to the Standards Nomination and Approval Process
(SNAP) and to the Army Standards Repository System (ASTARS).

                                                          
1 Buss, Arnold, and Leroy Jackson (September 1997), “Standard Army Modeling and Simulation Objects: Interim Report”, US
Army TRADOC Analysis Center – Monterey.
2  Renamed as the Policy & Technology Working Group



4

4. INITIAL DESIGN

An output of the SAMSO Study was a draft Platform Object
and Unit Object.  (The results of the work on the Platform
Object are described in AMSAA TECHNICAL REPORT NO. TR-634).
Members of the SAMSO study team reviewed documentation from a
number of existing and developing Army models.  The models
reviewed included:  Eagle; Integrated Theater Engagement Model
(ITEM); Joint Warfare Simulation (JWARS); Modular Semi-Automated
Forces (ModSAF); and Warfighter Simulation (WARSIM) 2000.  Based
on this research, the study team identified a set of components
that were common to the units represented in the models.3  This
Initial Unit Design (IUD) is shown in Figure 1.

Figure 1.  Initial Unit Object Design.

                                                          
3 Cotton, Arthur L. III (September 1997) “Development of Standard Unit-Level Army Object Model”,  MS Thesis, Department
of Operations Research, Naval Postgraduate School.

UnitUnit

status

0+

Unit

id

side

location

posture

mission

causeAttrition ()

determineAttrition ()

moveTo()

Logistics

type

receive()

expend()

Platform

location

side

assessDamage()

CC2

net

sendMessage ()

receiveMessage ()

0+ 0+0+



5

5. TEST DESIGN – AWARS UNIT OBJECT

The basic philosophy behind the development of any standard
object is its use as a building block in the development of
model-specific objects.  In order to determine the utility of
the proposed standard Unit Object, the IUD was used to develop
sample Unit Objects compatible with an aggregate-type model.
The model used to test the IUD was the Army Warfare Simulation
under development at TRAC-FLVN.

AWARS is a corps/division-level, low-resolution, command-
and-control model.  As a corps-level model, AWARS will integrate
units from battalion through corps to represent a combined-arms
battlefield.  AWARS will replace both the Eagle and Vector-In-
Commander (VIC) models.  The AWARS model uses an object oriented
design that shares many elements in common with the Eagle model.4

On November 12-14, 1997, the SAMSO study director (Major
Jackson), members of the OMSC (Don Hodge) and the AWARS design
team (Mike Hannon, Terry Gach, Mike Fraka) met to apply the IUD
to the development of an AWARS-compatible Unit Object.  The
resulting object was composed of eleven components, with five
coming from the IUD.  Figure 2 shows the composition of the
resulting AWARS-compatible Unit Object design.

An assessment of the utility of the IUD to support
development of AWARS-compatible unit objects identified a number
of issues.  On the one hand, all of the IUD object components
were used in the AWARS Unit Object with little or no
modification.  As would be expected, the AWARS Unit Object
design did contain model-specific additions to the IUD, but the
number of these additions was small.  The small number can be
attributed to the fact that AWARS is based on an object oriented
design and, as the model is still under development, the design
team focused on the required generic elements versus capturing
implementation-specific details.

                                                          
4 The Eagle model was developed from an object oriented design and was written in the Common Lisp Object System (CLOS)
language.



6

Figure 2.  AWARS Unit Object Design.

On the other hand, there were several additional object
components added to the IUD that represent functions that are
generic in nature and would be required for aggregate-type Unit
Objects.  One of these additional components addresses the
requirement to provide a description of the physical
characteristics and composition of aggregate-type units.
Specifically, all aggregate-type units occupy and/or are
responsible for a given amount of terrain.  Some method needs to
be available to represent this footprint (i.e., area and
orientation).  Additionally, aggregate units are, by definition,
composed of a number of individual systems.  The number and type
of each system figure into the attrition, mobility, and
logistics calculations.  Another area relates to the concept of
command and control.  Again, by their nature, aggregate units
need to represent the ability to command and control subordinate
units.  A third area is reflected in the AWARS component
“ATTRITION.”  Current Army-accepted attrition methodologies
differ according to the damage-causing mechanism.  Unlike
entity-type objects that contain only one type of damage-causing

1+

UnitUnit

getLocation()
getSpeed()
getMvmtDirection ()
getID()
getSide()
getPosture()
getStatus ()
getMission()
getEchelon()
move()
look()
determineAttrition ()

Geometry

getShape()
getOrientation ()
getLocation()

Communications

getNet()
setNet()
sendMessage ()
receiveMessage ()

SystemGroup

getQty()
acceptLoses ()
acceptGains ()

FireSuppor tt

coordinateFireSupport ()

Logistics

receive()

Attrition

causeAttrition ()

C2

doC2()

Maintenance             Supply

getRemainingCapacity ()
getTotalCapacity ()
getQtyOnHand ()
expend()

Platform

1+

1+

0+ 0+ 0+0+0+

0+ 0+



7

mechanism (i.e., direct fire versus indirect fire), aggregate
units can contain both.  This multiple nature needs to be
captured within the object framework.  A fourth area relates to
where the model cognitive/ decision making processes should
reside.  In most simulations, there are identified decisions
and/or choices that are required as a simulation executes.  For
aggregate-type units, there are both behaviors (e.g., how does a
battalion conduct a hasty attack) as well as cognitive/decision
making/planning processes.  The IUD structure, as used during
these sample object development efforts, did not contain a clear
location or component to host these types of behavior/cognitive
processes.



8

6. UNIT OBJECT DESIGN REVIEW

After the test application using the AWARS simulation, the
OMSC met to agree on required modifications to the draft Unit
Object.  In addition, the modified draft design for the Unit
Object was provided to a number of groups throughout the Army
for review and comment.  These groups included the Army Model
and Simulation Management Program Working Group (now the Policy
and Technology WG) and the Army Model and Simulation Standards
Category Committees.  The review results included written input
from the WARSIM simulation developers and the logistics
community.  The results of the OMSC review along with a summary
of the other comments are provided in this section.

6.1 OMSC Review.  On November 18-19, 1997, the OMSC met to
review the results of the Unit Object design test efforts.  The
members present for this meeting were Brad Bradley (Chairman),
Don Hodge (AMSAA), John Shepherd (CAA), Sean Mackinnon and Kevin
Gipson (NSC), Mike Hannon and Terry Gach (TRAC-FLVN), Major Jack
Jackson (TRAC-MTRY), Carol Denney and Donna Vargas (TRAC-WSMR),
and Ben Paz (STRICOM).  After the review of Unit Object design
test efforts, the OMSC modified the IUD in the following ways:

1. Added a new component (UnitGeometry) to provide a
description of the geometry of the unit on the ground,

2. Added a new component (SystemGroup) to provide a
description of the number and types of systems owned by
the unit,

3. Added a new sub-component (PlatformInformation) to
provide a location for system characteristics data,

4. Moved the Platform component from directly supporting
the Unit Object to supporting the SystemGroup
component,

5. Added a new component (C2) to provide a location to
place Command-and-Control functions,

6. Changed the attribute data found in the IUD to methods
that would return the attribute data, and

7. Added a number of new methods to the existing
components. (e.g. getNet(), setNet(),look(),
getEchelon(), getTotalCapacity(), etc.)

The interim design is shown in Figure 3.



9

Figure 3.  OMSC Interim Unit Object Design.

6.2 ARES Review.  ARES is a multi-resolution, Joint-force,
theater-level model.  ARES is being developed by the General
Research Corporation for the Concepts Analysis Agency to address
a broad spectrum of regional conflicts.  As a multi-resolution
model ARES can portray a wide spectrum of modeling entities
ranging from a single sensor system to an Army Corps containing
thousands of systems.  ARES is based on an object oriented
design.  The interim Unit Object design was reviewed by both the
government and contractor ARES design teams.  Their assessment
was that the proposed interim Unit Object design could have been
used to build ARES.  They made no recommended changes based on
this review.

Unit

getLocation()
getSpeed()
getMvmtDirection ()
getID()
getSide()
getPosture ()
getStatus ()
getMission()
getEchelon()
move()
look()
determineAttrition ()

0+

UnitGeometry

getShape()
getOrientation ()
getLocation()

Attrition

causeAttrition ()

0+

Communications

getNet()
setNet()
sendMessage ()
receiveMessage ()

0+

C2

doC2()

0+0+

Logistics

receive()

            Supply

getRemainingCapacity ()
getTotalCapacity ()
getQtyOnHand ()
expend()

 Maintenance

0+ 0+

SystemGroup

getQty()
acceptLoses ()
acceptGains ()

0+

0+

PlatformPlatformInfo

0+

UnitComponent

getStatus ()



10

6.3 WARSIM Review.  Representatives from the National
Simulation Center (Sean MacKinnon and Kevin Gipson) did a
comparison between the interim Platform and Unit Objects and
similar objects being developed for the WARSIM 2000 program
(Appendix B).  In this review, the authors identified major
differences in the organization and structure of the two Unit
Objects.  In the WARSIM design, the functional elements of the
OMSC Unit Object were partitioned between three different
objects.  Figures 4-6 show the WARSIM objects.  This difference
is attributable to the different assumptions made in developing
each design.  The WARSIM 2000 design mirrors the Operational
Requirements Document developed for the WARSIM 2000 program.
The interim standard Unit Object is oriented around physical
processes and functions.

Figure 4.  WARSIM Unit Model.

AUN_Simulated_Unit

Unit Name
Alliance
Echelon

Effectiveness Status
Current Location

Mission
Parent Unit

Superior Unit
Support Units

Supporting Units

AUN_Unit_Organization

AUN_SMCO

AUN_Headquarters_Unit
Subordinate Unit

AUN_Unit_Command_Node
Equipment List
Personnel List



11

Figure 5.  WARSIM AUN_C2_Resource Object Design.

Figure 6.  WARSIM AUN_Unit Object Design.

AUN_C2_Resource

AUN_Unit_Behavior

Preconditions
During Conditions

Post Conditions
Entry Criteria
Exit Criteria

Inputs
Outputs

Create()
Update_Task_Info()

Plan()
Execute()
Suspend()
Resume()

Terminate()

AUN_Fundamental_Behavior

AUN_C2_BehaviorAUN_Physical_Behavior

AUN_Behavior_Script

AUN_Weather_MapAUN_Terrain_Map

AUN_SMCO_Equipment_Data

AUN_Military_Behavior

Script List
Load_Behavior
Select_Script

AUN_Unit

AUN_C2_Resource

AUN_Simulated_Unit

Common Modeling Framework
{Provided by JSIMS}

AUN_World_ModelAUN_Agent

AUN_Unit_HCI

AUN_SMCO

AUN_C2_Product



12

Table 1 provides a comparison between the functions
performed by the components of each design.  From this table, we
can see that the functions identified in the OMSC Unit Object
are contained in the WARSIM design.  The differences between the
two designs relate to the location of some of the functions and
the nomenclature used to describe some of the functions.  Based
on this review, no changes were made to the interim Unit Object
definition.

Table 1.  Comparison of OMSC and WARSIM 2000 Functional
Components.

OMSC WARSIM

Unit AUN_Simulated_Unit
GetID() Unit Name
GetSide() Alliance
GetEchelon() Echelon
GetStatus() Effectiveness Status
GetLocation() Current Location
GetMission() Mission
GetSpeed()
GetMvmtDirection()
GetPosture()
DetermineAction()

AUN_C2_Behavior (see Figure 4 for
details about organization)

Move() AUN_Physical_Behavior (see Figure 4 for
details about organization)

Datalook() AUN_SMCO_Equipment_Data passes
info to AUN_SMCO



13

Table 1.  Comparison of OMSC and WARSIM 2000 Functional
Components. (Continued)

OMSC WARSIM

SystemGroup
GetQty()
AcceptLoses()
AcceptGains()

AUN_Unit_Command_Node

Platform AUN_SMCO

Geometry
GetShape()
GetOrientation()
GetLocation()

AUN_C2_Behavior

C2
DoC2()

AUN_C2_Resource

Attrition
CauseAttrition()

AEQ_Equipment sends info to
AUN_SMCO_Equipment_Data

Logistics
Receive()

AEQ_Equipment

Maintenance AEQ_Equipment

Supply
GetRemainingCapacity()
GetTotalCapacity()
GetQtyOnHand()
Expend()

AEQ_Equipment

Communications
GetNet()
SetNet()
SendMessage()
ReceiveMessage()

AUN_SMCO



14

6.4 Combat Service Support (CSS).  As a result of discussions
between the OMSC and Logistics SC members at the May 1998 Army
M&S Standards Workshop, the OMSC was provided a list of the
minimum CSS requirements to be represented in combat
simulations. The list is comprised of the following sets:

ARM
   -  Conduct ammo transfer operations.
   -  Account for direct and indirect fire ammo by type.

FUEL
   -  Conduct fuel transfer operations, including Refuel On the

     Move (ROM).
   -  Provide visibility of fuel quantities on hand.

MAN & MEDICAL
   -  Conduct medical evacuation and treatment operations.
   -  Generate types of combat and Disease and Non-Battle

  Injuries (DNBI) casualties.
FIX
   -  Conduct maintenance operations.
   -  Conduct evacuation and recovery operations.
   -  Generate combat and reliability failures.

After reviewing these requirements and the interim Unit
Object design, the OMSC addressed each as follows:

• The Supply Sub-Component of the Logistics Component of the
interim Unit Object addresses the following CSS elements:

-  ARM  - Account for direct and indirect fire ammo by
type.

-  FUEL - Provide visibility of fuel quantities on hand.

• Addition of the method "transfer()" to the Supply Sub-
Component of the interim Unit Object will address the
following CSS elements:

-  ARM  - Conduct ammo transfer operations.
-  FUEL - Conduct fuel transfer operations, including ROM.

• Add the method "conductMaintenance" to the Maintenance Sub-
Component of the Logistics Component of the interim Unit
Object to address the following CSS elements:

-  MAN & MEDICAL - Conduct medical treatment operations.
-  FIX   - Conduct maintenance operations.



15

• Add the method "conductRecovery" and "conductEvacuation" to
the Maintenance Sub-Component of the Logistics Component of
the interim Unit Object to address the following CSS elements:

-  MAN & MEDICAL - Conduct medical evacuation operations.
-  FIX   - Conduct evacuation/recovery operations.

• Generation of combat casualties and combat damage should be
addressed by the appropriate methodologies in the
determineAttrition() method of the interim Unit Object.

6.5 Senior Review Comments.  A part of the standards
development process includes reviews of all proposed standards
by senior analysts from the M&S community.  During the review of
the standard Unit Object, the recommendation was made that the
functions performed by a units sensors (i.e., look, report, etc)
be broken out from the main body of the Unit Object and placed
into a separate component labeled "Intel".  The design of the
Unit Object was modified to accommodate this suggestion.



16

7. FINAL UNIT OBJECT DESIGN AND DEFINITIONS

7.1 Final Unit Object Design.  Figure 7 shows the final design
for the Unit Object.  This design is based on the OMSC review
documented in this report and input provided by the M&S
community.  This design was nominated in the Standards
Nomination and Approval Process for placement into the Army
Standard Repository System.

Figure 7.  OMSC Final Unit Object Design.

Unit

getLocation()
getVelocity ()
getID()
getSide()
getPosture ()
getStatus ()
getMission()
getEchelon()
move()
determineAttrition ()

0+

UnitUnitGeometry

getShape()
getOrientation ()

Attrition

causeAttrition ()

0+

Communications

getNet()
setNet()
sendMessage ()
receiveMessage ()

0+

C2

doC2()

0+0+

Logistics

receive()

 Maintenance

conductMaintenance ()
conductEvacuation ()
conductRecovery ()

            Supply

getRemainingCapacity ()
getTotalCapacity ()
getQtyOnHand ()
expend()
transfer()

0+ 0+

SystemGroup

getQty()
acceptLoses ()
acceptGains ()

0+

0+

PlatformPlatformInfo

0+

UnitComponent

getStatus ()

Intel

collect()
reportContacts ()

0+



17

7.2 Unit Object Class And Component Definitions.  A detailed
description for each of the components and methods contained in
the Unit Object standard definition is provided below.

Class Unit: A “Unit” is any military organization that is
composed of multiple entities.  Examples include military
organizations such as a company, battalion, brigade, or division

Public Methods:
getLocation():  Returns the current unit location.
Typically this is the center of mass or some other point
location representative of the unit location.
getVelocity():  Returns the current velocity (direction of
movement and rate) of the unit.
getID():  Returns a string that identifies the unit.
getSide():  Returns the faction or coalition for the
platform.  There is no implied enmity between sides.
getPosture():  Returns the unit posture.  Examples of
posture might be operational activities like road march,
hasty attack, hasty defense, etc.
getStatus():  Returns the unit status.  Status is used for
planning.  Examples might include a percent effectiveness
(based on system weights), fraction on hand (number on hand
divided by number authorized), unit effectiveness state (an
enumerated type based on the percent effectiveness),
relationship with objective (an enumerated type based on
distance to current objective).  There may also be a status
for fuel and weapons and a status based on enemy fire.
getMission():  Returns the unit mission.  An example is the
current task the unit was ordered to accomplish.
getEchelon ():  Returns the unit echelon.  Examples are
battalion, brigade and division.
move():  Used to advances a unit toward its next location.
determineAttrition():  Used to calculate the attrition
caused by another unit or platform.

Class UnitComponent: A “Unit” is partitioned into logical
components so that the modeler can compose a unit from various
components.  Components may be extended through inheritance.
All of the components listed below will inherit the following
method from this class.

Public Methods:
getStatus():  Returns the status of the unit or component.



18

Class UnitGeometry.  The unit geometry describes the shape or
footprint of the unit on the ground, the layout of systems
within the unit, the unit search area, and unit orientation and
posture. Geometry may be used for attrition, sensing and
movement.

Public Methods:
getShape():  Returns the bounding shape of the unit.
getOrientation():  Returns the general orientation of the
systems within the unit location.

Class SystemGroup.  This component accounts for individual
systems (or platforms) within the unit.

Public Methods:
getQty ():  Return the number of systems of this type in
the unit.
acceptLosses ():  Used to decrement the number of systems
of this type in the unit.
acceptGains ():  Used to increment the number of systems of
this type in the unit.

Class Platform. A platform can be any entity of interest in the
model.  Examples include vehicles of all types, individuals/
persons, individual systems (i.e., radar systems), a missile,
etc.  The complete definition for this class is provided in a
separate section.

Class PlatformInfo:  This component contains static information
and/or data about the various platforms contained within the
unit.  Examples include the gross weight of a vehicle, a
description of the size or type of weapons mounted on the
platform, etc.

Class Logistics.  This component is intended to capture or
represent the internal logistics capability and/or requirements
of the unit.  This covers both supply and maintenance
requirements and/or activities.

Public Methods:
receive():  Used to increment the quantity of this logistic
component.



19

Class Supply.  A supply component of a unit such as ammunition
class.
Derived from Logistics

Public Methods:
getRemainingCapacity():  Returns the remaining capacity for
this supply component.
getTotalCapacity():  Returns the total capacity for this
supply component.
transfer():  Used to transfer a quantity of an on hand
supply component to another unit or platform.

Class Maintenance: A maintenance component of a unit such as a
repair action.
Derived from Logistics

Public Methods:
conductMaintenance():  Used to perform maintenance actions
on equipment and medical treatment for individuals.
conductRecovery(): Used to recover items from an area of
operations.
conductEvacuation(): Used to evacuate equipment and/or
individuals to rear areas.

Class C2.  This component is used for command and control
decision making in the unit.  A unit may have more than one
command and control component (for itself, for subordinate
units, and for other units).

Public Methods:
doC2():  Used to initiate a command and control cycle where
command decisions are made and control actions initiated.

Class Attrition.  The attrition component allows the unit to
cause losses to another unit.  This is shown as a separate class
because a unit can have more than one way to inflict damage on
another unit (i.e., direct fire systems, indirect fire systems,
etc).

Public Methods:
CauseAttrition():  Used for the unit to cause losses to
another unit.



20

Class Communications:  This component provides the ability to
explicitly model communications.

Public Methods:
getNet():  Returns the collection of objects capable of
exchanging messages.
setNet():  Used to add the unit to the collection of
objects capable of exchanging messages.
sendMessage():  Used to send a message on the net.
receiveMessage():  Used to receive a message from the net.

Class Intel:  This component provides the ability to explicitly
model the intelligence collection process performed by units
with their organic sensor assets.

Public Methods:
collect():  Used to initiate local detection using the unit
search capabilities.
reportContacts():  Used to report the results of the
collect() operation.



A-1

APPENDIX A - A COMPONENT APPROACH TO OBJECT MODEL STANDARDS FOR
SIMULATION



A-2

THIS PAGE INTENTIONALLY LEFT BLANK.



A-3

A Component Approach to Object Model Standards for
Simulation

Major Leroy A. Jackson
Operations Research Analyst

U.S. Army TRADOC Analysis Center—Monterey
(408) 656-4061

jacksonl@mtry.trac.nps.navy.mil

Summary.  Object models are an important feature of the United States Department of Defense (DoD)
High Level Architecture (HLA) and the Defense Modeling and Simulation Office (DMSO) Conceptual
Model of the Mission Space (CMMS).  Currently, all major DoD simulations under development use
object-oriented methodologies.  The major benefits of object-oriented programming include software reuse,
improved maintainability, interoperability, and rapid prototyping.  A set of standard objects is needed to
establish consistency among future Army models and simulations.  This paper describes a component
approach proposed for object model standards development.

1. INTRODUCTION

This paper describes a component approach for object-oriented modeling and design which has been
adopted for standards development in the U.S. Army modeling and simulation community. This design
approach directly supports the goals for developing object modeling standards by fostering model reuse and
improving model interoperability.

2. BACKGROUND

In May 1997, the U.S. Army Training and Doctrine Command (TRADOC) Analysis Center (TRAC) in
Monterey, California (TRAC—Monterey) began a study sponsored by the Army Modeling and Simulation
Office (AMSO) to support standards development for Army modeling and simulation objects.  [1] The
study team was led by a military analyst at TRAC—Monterey and included a professor and two graduate
students from the Operations Research Department of the Naval Postgraduate School.  The study advisory
group included senior analysts from the major Army analytical agencies.  The team examined selected
models from existing and future simulations under development in order to provide examples and insights
to support object standards development.  The team also developed an approach to object model standards
development, drafted sample standards for platforms (entities) and units, and drafted sample guidelines for
the use of standard objects.  The study team determined that object model standards would focus on high-
level abstract classes containing a minimal, essential set of class methods.  Rather than specify standard
attributes for classes, get and set methods would signify the data content of standard objects.  An important
aspect of the study team recommendations was the component approach to object model standards.

3. APPROACHES TO REUSE

The two main approaches to reuse in object oriented designs are class inheritance and object composition.
[2&3]  Each approach has distinct advantages and disadvantages.

3.1 Inheritance



A-4

Inheritance allows subclasses to extend and specialize a parent class by adding data and methods, and by
replacing the method implementation of the parent class with a new implementation. Inheritance is
straightforward since it is directly supported by object oriented languages.  General classes are placed
higher in the inheritance hierarchy and more specialized objects lower, so several subclasses may reuse the
parent class.  Inheritance, however, breaks encapsulation by exposing the parent class implementation to its
subclasses.  Implementation changes in the parent class often necessitate changes in subclasses.  Issues of
multiple inheritance and the requirement for compile-time binding further dilute the value of inheritance for
reuse.  Inheritance promotes implementation dependencies.  Despite some minor disadvantages, inheritance
is an extremely important feature in object oriented systems.  Inheritance of abstract classes provides
common protocols or interfaces in an object-oriented design.  This technique ameliorates some of the
pitfalls in the use of inheritance.

3.2 Object Composition

Object composition is the construction of a class using instances of other classes as components. Because
component classes are accessed through their interface (public methods), encapsulation is not broken and
there are significantly fewer implementation dependencies.  Object composition is, however, more difficult.
It requires that component classes have well defined interfaces that promote reuse.  In addition, objects
must respect these interfaces since no implementation details are exposed.  Finally, object composition
proliferates numerous small component classes since each component class must focus on relatively few
tasks.  This often requires many interrelationships among the component classes that would normally be
encapsulated in one larger class.

3.3 The Component Approach to Standards

The component approach to standards favors object composition over class inheritance, but exploits the
advantages of both approaches.  With the component approach, classes of interest are constructed by
selecting and implementing abstract component classes.  Component classes are implemented and possibly
extended through inheritance.  The principle advantage of the component approach to standards over
alternative approaches is it focuses on the development of standard interfaces rather than the construction
of a single monolithic class hierarchy.  If a single class interface supports several different implementation
schemes, then the goal of “plug and play” software components is achieved.  For example, if the same
method signature (set of parameters required to invoke the method) supports several attrition schemes
(Lanchester, Bonder-Ferrel, etc.) then it is possible to substitute one attrition algorithm for another without
making other changes in the simulation.

4. STANDARD M&S OBJECTS

This section provides examples of standard modeling and simulation (M&S) objects developed using the
component approach and discusses the problem of determining the appropriate level of detail for standards
using the component approach.

4.1 Location Class Example

The notion of location is fundamental to most military simulations.  There are numerous coordinate
systems used in simulation; each is appropriate for some simulations and not suitable for others.  A
common, abstract location object can foster interoperability among simulations that use different
coordinate schemes.  In this example (see next page), the Location class abstracts the concept of location
by providing a method to calculate the distance between locations and to convert to an unspecified standard
location scheme.  The Location class has two standard subclasses, Local and Geocentric, which illustrate
the two main competing coordinate schemes.  Each provides location through get methods. [4] The
Location class is powerful and flexible.  Suppose one has a simulation that uses a network of arcs and



A-5

nodes.  The distance between nodes is stored in a table and the distance from a node along an arc is
calculated based on the fraction of the arc traversed at the time a distance is requested.  The simulation
developer conforms to the standard by simply subclassing the Location class and implementing its
methods.

Location Class Hierarchy

4.2 PlatformComponent Example

Entity level simulations of combat generally have a notion of platform or entity upon which most militarily
significant actors from individual combatants to tanks to aircraft are based.  While the details vary
significantly among various simulations, there are common aspects of all platforms in almost all entity
level simulations.  The standard platform components are Location, Communications, Movement, Sensor,
Weapon, Carrier, Crew, PlatformFrame and Logistics (with Supply and Maintenance subclasses).  These
components are subclasses of the PlatformComponent class that provides getType and getStatus methods to
all components.  (The interested reader can refer to [4, 5 and 9] for the details of the platform components.)
A simulation developer composes platforms in an entity-level simulation using zero or more of each of
components as appropriate.  Implementation details are left to the developer, but each component provides
a standard interface into a significant aspect of the entity as illustrated by the Location class described
above.  The standard platform components are flexible.  The simulation developer uses only the
components required in the simulation.  If, for example, the crew is not modeled, then that component is
omitted.  There is no restriction on the number or type of weapons, sensors or communications systems on
the platform.

4.3 Levels of Detail for Standards

The component approach does not solve the problem of determining the appropriate level of detail for
standard classes, but it provides a suitable context for debate on this issue.  The study team used several
general rules to determine if a method belonged in a standard class.  The primary rule was that the method
be essential to support a function found in almost all simulations where the component would be found.
The study team made a conscious effort to err on the side of proposing minimal standards to avoid creating
a large burden for the simulation developer.  The shared vision was of abstract components as the basis for
standards.  In the approach described, the abstract components are sufficient to assemble a platform that
represents the abstract tank.  Further refinement would be required to produce a generic tank and still more
refinement to produce a detailed model of an actual tank.  Each level is a possible standard, but the fraction
of simulations which might support the more detailed standards is rather small.

Location
--------------------------
--------------------------

distanceFrom()
convert()

Local
-----------------------
-----------------------
getXCoordinate
getYCoordinate
getZCoordinate

Geocentric
-----------------------
-----------------------

getLattitude
getLongitude
getAltitude



A-6

5. CONCLUSION

The U.S. Army modeling and simulation community is reviewing standard component models for platform
and unit objects which evolved from the study.  The Object Management Standards Coordinating
Committee has proposed a general framework for object model development and is actively developing
standard component models for a variety of other significant objects found in ground combat simulations.
The component approach to object modeling promotes reuse of models and improves model
interoperability.  It focuses on the development of a standard object interface which consists of the
minimum, essential set of abstract class methods in a component.

6. ACKNOWLEDEMENTS

This work was sponsored by the Deputy Undersecretary of the Army for Operations Research through the
auspices of the U.S. Army Modeling and Simulation Office.  I am particularly indebted to Professor Arnold
Buss of the Naval Postgraduate School for his keen insights and tremendous contributions to the study.

7. ABOUT THE AUTHOR

Major Leroy A. Jackson is an Army officer with over 20 years of enlisted and commissioned service.  He
graduated with a BA in Mathematics from Cameron University in 1990 and with an MS in Operations
Research from the Naval Postgraduate School in 1995.  He is currently an operations research analyst at the
U.S. Army Training and Doctrine Command (TRADOC) Analysis Center (TRAC) Research Activities in
Monterey, California and continues graduate studies in operations research at the Naval Postgraduate
School.

8. REFERENCES

[1] Jackson, Leroy A. (April 1997) Standard Army M&S Objects Study Plan, US Army TRADOC Analysis
Center—Monterey.
[2] Gamma, Erich, Richard Helm, Ralph Johnson and John Vlissides (1995), Design Patterns: Elements of
Reusable Object-Oriented Software Reuse, Addison-Wesley.
[3] Jacobson, Ivar, Magnus Christerson, Patrik Jonsson and Gunnar Overgaard (1995), Object-Oriented
Software Engineering: A Use Case Driven Approach, Addison-Wesley.
[4] Buss, Arnold, and Leroy Jackson (September 1997), Standard Army Modeling and Simulation Objects:
Interim Report, US Army TRADOC Analysis Center— Monterey.
[5] Dudgeon, Douglas E. (September 1997) Development a Standard Platform-Level Army Object Model,
MS Thesis, Department of Operations Research, Naval Postgraduate School.
[6] Cotton, Arthur L. III (September 1997) Developing a Standard Unit-Level Object Model, MS Thesis,
Department of Operations Research, Naval Postgraduate School.



A-7

THIS PAGE INTENTIONALLY LEFT BLANK.



B-1

APPENDIX B - WARSIM 2000 CROSSWALK WITH THE OMSC OBJECT MODEL
STANDARD



B-2

THIS PAGE INTENTIONALLY LEFT BLANK.



B-3

WARSIM 2000 Crosswalk with the OMSC Object Model Standard

26 Feb 98

Sean MacKinnon
National Simulation Center

(mackinns@leav-emh1.army.mil)

Kevin Gipson
National Simulation Center

(gipsonk@leav-emh1.army.mil)

Background

The OOA approach chosen by the WARSIM IDT closely follows the Rumbaugh OMT
methodology.  The WARSIM IDT extracted nouns and noun phrases from the Operation
Requirements Document (ORD) to identify the object classes required within WARSIM and to
establish traceability back to user requirements.  A simplified model of this process is illustrated
in Figure 1.  This approach drove the IDT away from the development of a functionally oriented
class structure, therefore, a lot of differences have been noted between the two unit models.  As
an example, the WARSIM unit model does not contain functional classes such as Attrition,
Geometry, Logistics, etc.  Because of the fundamentally different OOA approaches applied,
these functions are represented within the WARSIM models by attributes and methods.  We have
attempted to create abridged representations of both the WARSIM Equipment and Unit models
so that a visual comparison could easily be made.  The following sections highlight some of the
differences between the WARSIM and OMSC object models.

Platform Model Crosswalk

There appears to be about an 85 percent or better correspondence between the two object models.
The WARSIM Equipment Model contains all the components of the OMSC standard except for
the Logistics and Maintenance classes.  The WARSIM Equipment Model represents logistics
and maintenance as attributes and methods.  In addition, the WARSIM Equipment Model
contains a Simulated Physical Thing class.  The WARSIM Team developed this abstract class as
a way of capturing the operations and attributes for any simulated entity on the battlefield that
has a state and is subject to detection and attrition.  Figure 2 and Table 1 are provided for visual
comparison between the two models.



B-4

Unit Model Crosswalk

As previously stated, the WARSIM team avoided developing class structures based on
functionality.  This fundamental difference in the OOA approach made the comparative
crosswalk difficult.  Figure 3 and Table 2 show the correspondence between the OMSC and
WARSIM unit models.  About 20 percent or less of the items are the same for each unit model.
However, all OMSC unit model items are represented within the WARSIM unit model.  The
most notable differences are that the Equipment model takes care of attrition and the WARSIM
C2 processes shown in Figures 4 and 5.  Table 3 provides some definitions for the WARSIM
classes.  The below sections provide specific comments on the OMSC unit model.

Unit Class:

There is some concern over the use of the term “sides”.  This may inadvertently force us into the
traditional red Vs blue way of thinking.  Conversely, in the WARSIM model an attribute of
alliance has been created to more accurately depict the real-world (we for alliances based upon
common interests and goals).  It appears that posture is a term used for simulation convenience
for abstracting mission and Unit State.  There is nothing in doctrine corresponding to posture.  A
mission is a large complex data structure.  If mission is expected to be an enumerated value in
this model then objects are needed to describe at least a rudimentary plan.  An
“executeMission()” is needed.  In WARSIM attrition will not be determined by Unit, rather the
results of combat at the platform level (WARSIM will keep track of platform location and
movement as part of a formation) will be reported to Unit as damage occurs.  An assessment
process in Unit will maintain unit composition and status.  So the “determineAttrition” method
would not be used.  Also, WARSIM uses heading versus MvmtDirection.

SystemGroup Class:

Within the WARSIM simulation we may have unit instances without Systems groups.  Although
units are composed of systems, WARSIM will model equipment separately from their units to
provide additional composibility.  This is different approach from the OMSC unit model.

Geometry Class:

WARSIM uses the term formation rather than shape.  Within the WARSIM object model,
formation is an attribute of the Unit class.  Again for composibility reasons and based on the
OOA approach used, WARSIM does not have a functional class like geometry.  Within
WARSIM, such a class might bring about a specific implementation versus being a more general
representation.



B-5

C2 Class:

WARSIM has a very detailed outline for the C2 process as illustrated in Figure 4 which can be
traced to the doctrinal military decision making process.  The OMSC Unit model contains only
doC2.

Attrition Class:

WARSIM will use attrition methods which will be executed by equipment interactions and will
be maintained as part of the Equipment model.

Logistics Class:

This is handled by AEQ_Equipment.

Communications Class:

This is handled through SMCO.

Conclusion

Although there is a good amount of similarity between the OMSC Platform model and the
WARSIM Equipment model, the approaches used to develop unit object models are
fundamentally different.  This is not to say that one approach is better than the other, rather, the
WARSIM focus on satisfying training requirement and the JSIMS Enterprise influence have
driven the development of WARSIM object models.

Recommendation

The WARSIM IDT has expressed interest in getting involved in the OMSC process to develop
Army M&S community standards.  Recommend that the OMSC contact the WARSIM IDT and
possibly schedule a future meeting in Orlando.  This would provide an opportunity for the
WARSIM IDT to share insight into their overall development process and the thought behind
their current object models.



B-6

Operational Requirements
Document (ORD)

Systems Specifications (SS)

User

Contractor

Requirements Object Model

Figure 1

1.  Writes ORD

2.  Gives to contractor
as requirements

3.  Contractor writes SS

4.  SS provides indication of
contractor understanding of
requirements

Platform_Component

Supply

Equipment_Platform

Personnel_Platform

Weapon

Movement_Platform Cargo_Container Sensor

Equipment

Simulated_Physical_Thing

Life_Form_Platform

Animal_Platform

Power_Supply Mission_Specific_Device
s

Computer_System

Platform

Type
Status

Location
Side

Assess_Damage

Sensor

Max Rnd
Orientation

Contact
Activate

Deactivate

Weapon

Max Rng
Load
Aim
Fire

Move

Velocity
Change
Velocity

Move_To

Logistics

Received

Supply

Rmn_Cap
Total_Cap
Qty_on_Hd

Expend

Crew

Quantity

Maint

Commo

Get_net
Set_Not
SndMsg
RecMsg

Carrier

Load
Unload

RmnCap
Tot_Cap

Qty_on_Hd

PlatFrm

FrmComp

Figure 2

Communications_Equipment



B-7

AUN_Simulated_Unit

Unit Name
Alliance
Echelon

Effectiveness Status
Current Location

Mission
Parent Unit

Superior Unit
Support
UnitsSupporting Unit

AUN_Unit_Organization

AUN_SMCO

AUN_Headquarters_Unit
Subordinate Unit

AUN_Unit_Command_Node
Equipment List
Personnel List

Unit

getLocation
n

()
getSpeed ()

getMvmtDirection()
getID()

getSide()
getPosturee()
getStatus()
getMission
getEchelon()

move()
look()

determineAction()

SystemGroup

getQty ()
acceptLose
s

()
acceptGains
s

()

Logistics

receive()

Communications

getNet()
setNet()

sendMessag
e

()
receiveMessag
e

()

Geometry

getShape ()
getOrientatio
n

()
getLocation()

Attrition

causeAttrition()

C2

doC2()

Platform

Maintenance Supply

getRemainingCapacity ()
getTotalCapacity
getQtyOnHandd

expend()

0..1

1

1..*

0..1

0..* 0..* 0..*

Figure 3

AUN_C2_Resource

AUN_Unit_Behavior

Precondition
sDuring Conditions

Post Conditions
Entry Criteria
Exit Criteria

Inputs
Outputs

Create()
Update_Task_Info()

Plan()
Execute()
Suspend()
Resume()

Terminate()

AUN_Fundamental_Behavior

AUN_C2_BehaviorAUN_Physical_Behavior

AUN_Military_Behavior

Script List
Load_Behavior
Select_Script

AUN_Behavior_Script

AUN_Weather_MapAUN_Terrain_Map

AUN_SMCO_Equipment_Data

Figure 4



B-8

AUN_Unit

AUN_C2_Resource

AUN_Simulated_Unit

Common Modeling  Famework

{Provided by JSIMS)

AUN_World_ModelAUN_Agent

AUN_Unit_HCI

AUN_SMCO

AUN_C2_Product

Figure 5



B-9

Table 1.  Comparison of Platform Models.
OMSC WARSIM

Platform Equipment_Platform
Platform Component Platform-Component
Logistics Maintenance Attributes and Methods

Supply Supply
Carrier Cargo-Container
Communications Communications-Equipment
Crew Personnel-Platform
Movement
PlatformFrame
FrameComponent

Movement-Platform

Sensor Sensor
Weapon Weapon

Table 2.  Comparison of Unit Models.
OMSC WARSIM

Unit AUN_Simulated_Unit
GetID() Unit Name
GetSide() Alliance
GetEchelon() Echelon
GetStatus() Effectiveness Status
GetLocation() Current Location
GetMission() Mission
GetSpeed()
GetMvmtDirection()
GetPosture()
DetermineAction()

AUN_C2_Behavior (see Figure 4 for details about
organization)

Move() AUN_Physical_Behavior (see Figure 4 for details
about organization)

Datalook() AUN_SMCO_Equipment_Data passes info to
AUN_SMCO



B-10

Table 2.  Comparison of Unit Models Cont.
OMSC WARSIM

SystemGroup
GetQty()
AcceptLoses()
AcceptGains()

AUN_Unit_Command_Node

Platform AUN_SMCO

Geometry
GetShape()
GetOrientation()
GetLocation()

AUN_C2_Behavior

C2
DoC2()

AUN_C2_Resource

Attrition
CauseAttrition()

AEQ_Equipment sends info to
AUN_SMCO_Equipment_Data

Logistics
Receive()

AEQ_Equipment

Maintenance AEQ_Equipment

Supply
GetRemainingCapacity()
GetTotalCapacity()
GetQtyOnHand()
Expend()

AEQ_Equipment

Communications
GetNet()
SetNet()
SendMessage()
ReceiveMessage()

AUN_SMCO



B-11

Table 3.  Definitions.
AEQ_Equipment Subsystem that maintains equipment and send

information about equipment to
AUN_SMCO_Equipment_Data.

AUN_C2_Behavior C2 fundamental behaviors are the atomic cognitive
behaviors.  The military decision making process is
implemented through a combination of C2
fundamental behaviors.

AUN_Physical_Behavior Physical fundamental behaviors have their effects in
the equipment csci.  All physical action of a unit
occurs through physical fundamental behaviors.

AUN_Unit_Command_Node This class represents a group of equipment and
personnel at the lowest modeled echelon level that
functions, and is controlled, as an atomic element.
This means that the unit will behave as a single
entity.  For example, all of the tanks and their crews
of a tank platoon will move together in a single
formation.

AUN_Simulated_Unit Unit class
AUN_SMCO Unit command nodes have a SMCO.  A unit

command node’s SMCO represents the minds of all
the unit command node’s personnel.  Unit
Command Node’s have a specialization class called
Headquarters Unit.  A headquarters unit’s SMCO
not only directs the actions of its own physical
objects, but also commands and monitors
subordinate headquarters units via orders and
reports.

AUN_SMCO_Equipment_Data Contains information about the equipment.
Simulated_Physical_Thing This object class contains the operations and

attributes for any simulated entity that has a state
and is subject to detection and attrition.



B-12

THIS PAGE INTENTIONALLY LEFT BLANK.



C-1

APPENDIX C - DISTRIBUTION LIST



C-2

THIS PAGE INTENTIONALLY LEFT BLANK.



APPENDIX C – DISTRIBUTION LIST

No. of Copies Organization

C-3

4 Director
U.S. Army Model and Simulation Office
ATTN: (Mr. Vern Bettencourt)
      (Mr. Richard Maruyama)
      (LTC Donald Timian)
      (MAJ Curt Doescher)
Crystal Gateway North, Suite 503E
1111 Jefferson Davis Highway
Arlington, VA 22202

1 Deputy Under Secretary of the Army for
Operations Research
ATTN: SAUS-OR (Mr. Walter W. Hollis)
Room 2E660
102 Army Pentagon
Washington, DC 20310-0102

2 Deputy Assistant Secretary for Army for
Research, Development and Acquisition
ATTN: SARD-ZD (Dr. Herbert Fallin, Jr.)
              (COL Lavine)
Room 2E673
102 Army Pentagon
Washington, DC 20310-0103

2 Director
U.S. Army Concepts Analysis Agency
ATTN:  CSCA-OS (Mr. Wallace Chandler)
               (Mr. John Sheperd)
8120 Woodmont Avenue
Bethesda, MD 20814-2797

2 Director
WARSIM
National Simulation Center
ATTN:  ATZL-NSC-W (Ms. Annette Ratzenberger)

   (Sean MacKinnon)
410 Kearney Avenue
Fort Leavenworth, KS  66027-1306

2 Director
U.S. Army TRADOC Analysis Center-FLVN
ATTN:  ATRC-FM (Mr. Kent Pickett)

     (Mr. Mike Hannon)
ATTN:  ATRC-TD (Dave Loental)
255 Sedgwick Avenue



APPENDIX C – DISTRIBUTION LIST

No. of Copies Organization

C-4

Fort Leavenworth, KS  66027-2345



APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-4

3 Director
U.S. Army TRADOC Analysis Center-WSMR
ATTN:  ATRC-WE (Ms. Donna Vargas)

     (Mr. Carrol Denny)
     (Mr. Chad Mullis)

Bldg 1401
White Sands Missile Range, NM  88002-5502

1 Commander
U.S. Army TRADOC Analysis Center-Montery
ATTN: MAJ Leroy Jackson
PO Box 8692
Montery, CA 93940

1 Commander
U.S. Army Simulation, Instrumentation, and
Training Command
ATTN: (Brian Saute)
12350 Research Parkway
Orlando, FL 32826-3276

1 Commander
U.S. Army Medical Department Center & School
ATTN: MCCS-FF (Ray Devore)
1400 East Grayson
Fort Sam Houston, TX 78234-6175

1 Charlie Leake
JWARS Office
1555 Wilson Blvd
Arlington, VA 22209

1 Tom Shook
DMSTTIAC
203 Environs Road
Sterling, VA 20165-5805

1 Commandant
USAJFKSWCS
ATTN: AOJK-DT-CD (Dean Rose)
Ft Bragg, NC  28307-5000

10 Commander
US Army Aviation Center
ATTN:  ATZQ-TDS-W (Rarick)
Ft Rucker, AL  36362-5263



APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-5



APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-6

1 CPT David Dinger
Bldg. 5G, Room 303
DCSSA, HQ TRADOC
Fort Monroe, VA 23651

10 Director
U.S. Army Materiel Systems Analysis Activity
392 Hopkins Road
ATTN:  AMXSY-C
       AMXSY-CS (Alan Dinsmore, Brad Bradley)
       AMXSY-J (Pete Rigano)
       AMXSY-DD (3 cys)
Aberdeen Proving Ground, MD  21005-5071

1 Assistant Secretary of the Army for Research,
Development, and Acquisition

ATTN:  SARD-DO (Ms. Ellen Purdy)
2511 Jefferson Davis Highway
Arlington, VA  22202-3911

1 Commander
Headquarters
U.S. Army Corps of Engineers
Director of Research and Development
ATTN:  CERD-M (Mr. Jerry Lundien)

20 Massachusetts Avenue, NW
Washington, DC  20312-1000

1 Commander
U.S. Army Operational Test and Evaluation
Command
ATTN: CSTE-M (Ms.  Sarah Wilson)
4501 Ford Avenue
Alexandria, VA 22302-1458

1 Director
U.S. Army Cost and Economic Analysis Center
ATTN: SFFM-CA-PA (Mr. Steve Pawlow)
5611 Columbia Pike
Falls Church, VA 22041-5050

1 Director
U.S. Army Concepts Analysis Agency
ATTN: CSCA-OS (Mr. Gerry Cooper)
8120 Woodmont Avenue
Bethesda, MD 20814-2797



APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-7



APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-8

2 Commander, DCSSA
US Army Training and Doctrine Command
ATM: ATAN-SM (Mr. Carson/Angela Winter)
Fort Monroe, VA 23651-5143

1 Commander, U.S. Army Material Command
ATTN: AMCRDA-TL (Mr.  Ken Welker)
5001 Eisenhower Ave
Alexandria, VA 22333-0001

1 Commander
US Army Space and Missile Defense Command
ATTN: CSSD-BL-SC (Mr. Troy, Street)
PO Box 1500
Huntsville, AL 35807

1 Commandant, US Army War Co]lege
ATTN: AWC-AW (COL Pat Slattery)
Carlisle Barracks
Carlisle, PA 17013-5050

1 Chief of Army Reserves
ATTN: DAAR-PAE (CPT Ward Litzenberg)
Room ID416, Pentagon
Washington, DC 20310-2400

1 Director
U.S. Army Logistics Integration Agency
ATTN: LOSA-CD (Mr. Mike Rybacki)
54 M Avenue, Suite 4
New Cumberland, PA 17070-5007

1 Commander
U.S. Army Signal Command
ATTN: AFSC-PLE-AM (Dr.  Leon Spencer)
Fort Huachuca, AZ 85613-5000

1 Commander
U.S Army Forces Command
ATTN: AFOP-PLA (MAJ Steve Aviles)
1777 Hardee Avenue, S.W.
Fort McPherson, GA 30330-6000

1 Deputy Chief of Staff for Intelligence
ATTN: DAMI-IFT( Ms Marilyn Macklin)
Room 9302, Presidential Tower



APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-9

2511 Jefferson Davis Highway
Arlington, VA 22202



APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-10

1 Commander
U.S. Army Research Institute for the
Behavioral and
Social Sciences
ATTN: PERI-II (Dr. Philip Gillis)
12350 Research Parkway
Orlando, FL 32826

1 Office of the Chief of Staff, Army
Progam Analysis & Evaluation Directorate
ATTN:  DACS-DPM (LTC Mike Clark)
Room 3C719, Pentagon
Washington, DC  20310

1 Deputy Chief of Staff for Personnel
ATTN: DAPE-MR (Dr. Robert Holz)
Room 2C733, Pentagon
Washington, DC 20310

1 Chief, National Guard Bureau
ATTN: NGB-ARO-TS (MAJ Gary Harber)
111 South George Mason Drive
Arlington, VA 22204-1382

1 Army Digitization Office
ATTN: DAMO-ADO (Ms.  Susan Wright)
400 Army, Pentagon
Washington, DC 20301

1 Military Traffic Management Command
Tansportation Engineering Agency (MTMCTEA)
ATM: MTTE-SIM (Mr. Melvin Sutton)
720 Thimble Shoals Boulevard, Suite 130
Newport News, VA 23606

1 Commander-in-Chief
U.S. Army Europe and 7th Army
ATTN: AEAGC-TS-F (LTC Howard Lee)
Unit: 28130
APO AE 09114

1 Commander
HQ, USARPAC
ATTN:  APOP-PL (Mr. Bob Deryke)
Foprt Shafter, HI  96858-5100



APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-11

1 TRAC-WSMR
ATTN:  ATRC-WB (Dave Dixon)
WSMR, NM  88002-5502



APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-12

1 Commander
USASTRICOM
ATTN:  AMSTI-EC (Wesley Milks)
12350 Research Parkway
Orlando, FL  32826-3276

Commander
USA Signal Center and Fort Gordon
ATTN:  DCD. CAD, M&S Br (Burt Kunkel)
Fort Gordon, GA  30905-5090

1 Director
USA Research Laboratory
ATTN:  AMSRL-IS-EW (Rick Shirkley)
WSMR, NM  88002-5501

1 PM-WARSIM
USA STRICOM
ATTN:  MAJ Frank Rhinesmith
12350 Research Parkway
Orlando, FL  32826

1 USA CASCOM
ATTN:  ATCL-CAT (Ron Fischer)
Fort Lee, VA  23801-6000

1 Director
USACAA
ATTN:  CSCA-MD (Julie Allison)
8120 Woodmont Avenue
Bethesda, MD  20814-2797

1 Director
USAEWES
ATTN:  CEWES-GM-K (Niki Deliman)
3909 Halls Ferry Road
Vicksburg, MS  39181-6199

1 TRAC
ATTN:  ATRC-FM (Pam Blechinger)
255 Sedgewick Avenue
Fort Leavenworth, KS  66027-1306



APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-13

1 USATEC
ATTN:  CETEC-TP (Ken Barnette)
7701 Telegraph Road
Alexandria, VA  22315

1 TPIO for Synthetic Environment
National Simulation Center
ATTN:  MAJ Mike Staver
410 Kearney Avenue’
Fort Leavenworth, KS  66027-1306

7 Defense Technical Information Center
8725 John J. Kingman Road, STE 0944
Fort Belvoir, VA  22060-6218

1 Director
Information Systems for Command, Control,
    Communications, & Computers
ATTN:  SAIS-PAA-S (LTC Craig Cromwell)
Room 1C634, Pentagon
Washington, DC  20310

1 Deputy Chief of Staff for Operations and Plans
   ATTN:  DAMO-ZD (MAJ Bruce Simpson)
Room 3A538, Pentagon
Washington, DC  20310-0400

1 TRAC
ATTN:  ATRC-FZ (Larry Cantwell)
255 Sedgwick Avenue
Fort Leavenworth, KS  66027-2345


